\(\int \frac {1}{(a+a \sin (c+d x))^{5/2}} \, dx\) [81]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 14, antiderivative size = 107 \[ \int \frac {1}{(a+a \sin (c+d x))^{5/2}} \, dx=-\frac {3 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}-\frac {3 \cos (c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}} \]

[Out]

-1/4*cos(d*x+c)/d/(a+a*sin(d*x+c))^(5/2)-3/16*cos(d*x+c)/a/d/(a+a*sin(d*x+c))^(3/2)-3/32*arctanh(1/2*cos(d*x+c
)*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)

Rubi [A] (verified)

Time = 0.07 (sec) , antiderivative size = 107, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.214, Rules used = {2729, 2728, 212} \[ \int \frac {1}{(a+a \sin (c+d x))^{5/2}} \, dx=-\frac {3 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {3 \cos (c+d x)}{16 a d (a \sin (c+d x)+a)^{3/2}}-\frac {\cos (c+d x)}{4 d (a \sin (c+d x)+a)^{5/2}} \]

[In]

Int[(a + a*Sin[c + d*x])^(-5/2),x]

[Out]

(-3*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/(16*Sqrt[2]*a^(5/2)*d) - Cos[c + d*x]/
(4*d*(a + a*Sin[c + d*x])^(5/2)) - (3*Cos[c + d*x])/(16*a*d*(a + a*Sin[c + d*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2729

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c + d*x]*((a + b*Sin[c + d*x])^n/(a*d
*(2*n + 1))), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rubi steps \begin{align*} \text {integral}& = -\frac {\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}+\frac {3 \int \frac {1}{(a+a \sin (c+d x))^{3/2}} \, dx}{8 a} \\ & = -\frac {\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}-\frac {3 \cos (c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}+\frac {3 \int \frac {1}{\sqrt {a+a \sin (c+d x)}} \, dx}{32 a^2} \\ & = -\frac {\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}-\frac {3 \cos (c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}}-\frac {3 \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{16 a^2 d} \\ & = -\frac {3 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\cos (c+d x)}{4 d (a+a \sin (c+d x))^{5/2}}-\frac {3 \cos (c+d x)}{16 a d (a+a \sin (c+d x))^{3/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.09 (sec) , antiderivative size = 196, normalized size of antiderivative = 1.83 \[ \int \frac {1}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left (8 \sin \left (\frac {1}{2} (c+d x)\right )-4 \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+6 \sin \left (\frac {1}{2} (c+d x)\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^2-3 \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^3+(3+3 i) (-1)^{3/4} \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (c+d x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^4\right )}{16 d (a (1+\sin (c+d x)))^{5/2}} \]

[In]

Integrate[(a + a*Sin[c + d*x])^(-5/2),x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*(8*Sin[(c + d*x)/2] - 4*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) + 6*Sin[(
c + d*x)/2]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2 - 3*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3 + (3 + 3*I)*(-
1)^(3/4)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^4))/(16
*d*(a*(1 + Sin[c + d*x]))^(5/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(198\) vs. \(2(88)=176\).

Time = 0.69 (sec) , antiderivative size = 199, normalized size of antiderivative = 1.86

method result size
default \(-\frac {\left (-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{2} \left (\cos ^{2}\left (d x +c \right )\right )+6 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{2} \sin \left (d x +c \right )+6 \sqrt {a -a \sin \left (d x +c \right )}\, a^{\frac {3}{2}} \sin \left (d x +c \right )+6 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{2}+14 \sqrt {a -a \sin \left (d x +c \right )}\, a^{\frac {3}{2}}\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}}{32 a^{\frac {9}{2}} \left (1+\sin \left (d x +c \right )\right ) \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(199\)

[In]

int(1/(a+a*sin(d*x+c))^(5/2),x,method=_RETURNVERBOSE)

[Out]

-1/32/a^(9/2)*(-3*2^(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^2*cos(d*x+c)^2+6*2^(1/2)*arcta
nh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^2*sin(d*x+c)+6*(a-a*sin(d*x+c))^(1/2)*a^(3/2)*sin(d*x+c)+6*2^
(1/2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*a^2+14*(a-a*sin(d*x+c))^(1/2)*a^(3/2))*(-a*(sin(d*x+
c)-1))^(1/2)/(1+sin(d*x+c))/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 320 vs. \(2 (88) = 176\).

Time = 0.30 (sec) , antiderivative size = 320, normalized size of antiderivative = 2.99 \[ \int \frac {1}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {3 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right ) - 4\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 4\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )} + 3 \, a \cos \left (d x + c\right ) - {\left (a \cos \left (d x + c\right ) - 2 \, a\right )} \sin \left (d x + c\right ) + 2 \, a}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right ) + 4 \, {\left (3 \, \cos \left (d x + c\right )^{2} + {\left (3 \, \cos \left (d x + c\right ) - 4\right )} \sin \left (d x + c\right ) + 7 \, \cos \left (d x + c\right ) + 4\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} - 2 \, a^{3} d \cos \left (d x + c\right ) - 4 \, a^{3} d + {\left (a^{3} d \cos \left (d x + c\right )^{2} - 2 \, a^{3} d \cos \left (d x + c\right ) - 4 \, a^{3} d\right )} \sin \left (d x + c\right )\right )}} \]

[In]

integrate(1/(a+a*sin(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/64*(3*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + (cos(d*x + c)^2 - 2*cos(d*x + c) - 4)*sin(d*x + c) - 2*co
s(d*x + c) - 4)*sqrt(a)*log(-(a*cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*sqrt(a)*(cos(d*x + c) - si
n(d*x + c) + 1) + 3*a*cos(d*x + c) - (a*cos(d*x + c) - 2*a)*sin(d*x + c) + 2*a)/(cos(d*x + c)^2 - (cos(d*x + c
) + 2)*sin(d*x + c) - cos(d*x + c) - 2)) + 4*(3*cos(d*x + c)^2 + (3*cos(d*x + c) - 4)*sin(d*x + c) + 7*cos(d*x
 + c) + 4)*sqrt(a*sin(d*x + c) + a))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 - 2*a^3*d*cos(d*x + c) - 4
*a^3*d + (a^3*d*cos(d*x + c)^2 - 2*a^3*d*cos(d*x + c) - 4*a^3*d)*sin(d*x + c))

Sympy [F]

\[ \int \frac {1}{(a+a \sin (c+d x))^{5/2}} \, dx=\int \frac {1}{\left (a \sin {\left (c + d x \right )} + a\right )^{\frac {5}{2}}}\, dx \]

[In]

integrate(1/(a+a*sin(d*x+c))**(5/2),x)

[Out]

Integral((a*sin(c + d*x) + a)**(-5/2), x)

Maxima [F]

\[ \int \frac {1}{(a+a \sin (c+d x))^{5/2}} \, dx=\int { \frac {1}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(1/(a+a*sin(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sin(d*x + c) + a)^(-5/2), x)

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 153, normalized size of antiderivative = 1.43 \[ \int \frac {1}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {\sqrt {2} {\left (\frac {3 \, \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {3 \, \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {2 \, {\left (3 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 5 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2} a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}\right )}}{64 \, \sqrt {a} d} \]

[In]

integrate(1/(a+a*sin(d*x+c))^(5/2),x, algorithm="giac")

[Out]

1/64*sqrt(2)*(3*log(sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(a^2*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 3*log(-sin
(-1/4*pi + 1/2*d*x + 1/2*c) + 1)/(a^2*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 2*(3*sin(-1/4*pi + 1/2*d*x + 1/2*
c)^3 - 5*sin(-1/4*pi + 1/2*d*x + 1/2*c))/((sin(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1)^2*a^2*sgn(cos(-1/4*pi + 1/2*d
*x + 1/2*c))))/(sqrt(a)*d)

Mupad [F(-1)]

Timed out. \[ \int \frac {1}{(a+a \sin (c+d x))^{5/2}} \, dx=\int \frac {1}{{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int(1/(a + a*sin(c + d*x))^(5/2),x)

[Out]

int(1/(a + a*sin(c + d*x))^(5/2), x)